Asynchronous Reliability-Aware Multi-UAVCoverage Path Planning

Abstract

Graceful degradation is a potential advantage of Multi-Robot Systems over Single-Robot Systems. In aerial robotics applications, such as infrastructure inspection, this trait is desirable as it would improve mission reliability despite the use of failure-prone low-cost drones. The Reliability-Aware Multi-Agent Coverage Path Planning (RA-MCPP) problem finds path plans for each robot to maximise the probability of mission completion by a given deadline. This paper proposes a path planner for RA-MCPP formulated in continuous time, enabling more complex realistic environments to be considered. The proposed method (i) extends a reliability evaluation framework to evaluate the Probability of Completion metric on asynchronous strategies on non-unit lattice graph environments, and (ii) introduces a greedy-genetic meta-heuristic optimisation method as a scalable and accurate RA-MCPP solver. This method is shown to provide plans with higher reliability when compared with existing approaches in three real inspection scenarios.

Publication
IEEE International Conference on Robotics and Automation (ICRA)