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Abstract—Graceful degradation is a potential advantage of
Multi-Robot Systems over Single-Robot Systems. In aerial
robotics applications, such as infrastructure inspection, this
trait is desirable as it would improve mission reliability despite
the use of failure-prone low-cost drones. The Reliability-Aware
Multi-Agent Coverage Path Planning (RA-MCPP) problem
finds path plans for each robot to maximise the probability
of mission completion by a given deadline. This paper proposes
a path planner for RA-MCPP formulated in continuous time,
enabling more complex realistic environments to be consid-
ered. The proposed method (i) extends a reliability evaluation
framework to evaluate the Probability of Completion metric on
asynchronous strategies on non-unit lattice graph environments,
and (ii) introduces a greedy-genetic meta-heuristic optimisation
method as a scalable and accurate RA-MCPP solver. This
method is shown to provide plans with higher reliability when
compared with existing approaches in three real inspection
scenarios.

Index Terms—Multi-Robot Systems, Coverage Path Planning,
Reliability Analysis

I. INTRODUCTION

Ensuring performance with respect to time constraints and
external risks is a common requirement in real-life planning.
This is especially true in aerial robotics applications, as
small unmanned aerial vehicles (UAVs) are prone to failures
[1, 2]. Multi-UAV solutions are attractive for their flexibility,
scalability, and tolerance to individual failure in comparison
to single-UAV solutions [3]. This comes at the cost of
more challenging coordination, for which task allocation
methods typically seek efficient division of work to prioritise
early completion [4]. However, consider the example of a
railway bridge inspection: the priority is to avoid disruption
to services, requiring reliable completion before the passage
of the next train. This may demand a different distribution
of work to that of prioritising an early finish. A reliablity-
informed Multi-UAV approach has the potential to achieve
these requirements where Single UAV solutions may struggle
[5].

The Reliability-Aware Multi-Agent Coverage Path Plan-
ning (RA-MCPP) problem is to find paths for each robot
which will maximise the probability that every part of the
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environment will be covered by a deadline. It extends Multi-
Agent Coverage Path Planning (MCPP) which solely seeks
to find minimum cost paths such that the whole environment
is visited [6]. In MCPP, to minimise the cost, often travel
time, each node is planned to be visited by only a single
robot. However, this is a poor solution for RA-MCPP, as a
single robot failure would require another robot to complete
the missed tasks in addition to its own, likely exceeding the
allotted time and incurring additional costs. RA-MCPP uses
explicit models of agent failure-rates to optimise Probability
of Completion (PoC). Hence it promotes overlapping robot-
task allocations, offering higher mission reliability at the
expense of nominal-case time.

Previous formulations of RA-MCPP [7, 8] assumed syn-
chronous motion of agents across a uniform lattice of tasks.
This enabled a Markov model of PoC to be embedded in
optimisers such as MILP or GA. The contribution of this
paper is to extend RA-MCPP to less constrained scenarios.
This method consists of two parts (i) a formulation of
the PoC model including asynchronous moves and tasks
of varying duration; and (ii) a meta-heuristic optimisation
method referred to as the Greedy Genetic Algorithm for
solving the extended RA-MCPP. The solution is constructed
iteratively by using a genetic algorithm to greedily choose
additional trajectories which maximise PoC. The new op-
timisation approach, along with existing evolutionary and
heuristic methods [8], is then evaluated on two variants
of an aeroplane inspection scenario and a laboratory tour
scenario (Figure 1 and 3). The results demonstrate that our
new method can produce plans with higher reliability than
previous methods in more realistic conditions.

II. RELATED WORK

Resilience to failures for multi-robot coverage is currently
an active area of research. Early work [10, 11] defined a
given plan as robust if the mission will eventually complete
as long as at least one robot remains alive. This, however,
is often the worst case, with no graceful degradation, likely
providing conservative strategies in practice. More recently,
[12] considers MCPP in an unknown environment with
failure-prone robots by applying distributed game theoretic
decision methods in order to cooperatively decide task re-



(b) Aeroplane Inspection Environment 2 - 4 drones achieves PoC' = 0.9636 at ¢t = 304s with bathtub800 model.

Fig. 1: Inspection paths found by the Greedy Genetic method for 4 agents covering a Boeing 747 model. The waypoints
found using our implementation of [9]. Cross indicates starting location, traversable edges in grey, path marked by arrows

allocations on failure. Similar to our work, task allocations
are evaluated by their probabilities of success given a model
of battery reliability. [13] combines a reliability constraint
on the optimisation of the number of drones required to
complete an area coverage task, with a local re-planner to
actively compensate if a robot is lost. Both of these methods
are online reactive methods which seek to find actions
which minimise the effect of robot failure on the overall
objective. In contrast, our work considers the fundamental
effect of planning the initial paths with respect to a reliability-
aware objective function through a-priori analysis of known
environments. This is similar to [14—16], where the authors’
a-priori design strategies for non-coverage tasks are robust
to a fixed number of failures during execution. However, our
strategy optimisation also takes into account the failure of
any number of robots. This work is also informed by Relia-
bility Optimisation, applied to task allocation on distributed
computer systems by [17, 18]. Our method extends theirs by
both requiring spatial task orderings, and supporting varying
task lengths with asynchronous execution.

In previous work, [7] presented a brief introduction of the
reliability evaluation framework along with a Linear Program
solver for discrete time RA-MCPP. [8] then formally intro-
duced the RA-MCPP problem, the complete mathematical
formulation of the evaluation framework, the Probability of
Completion (PoC) metric, and presents a genetic algorithm
(GA) for finding RA-MCPP path plans. However, in this
previous work it is assumed that the environment can be
discretised into a unit lattice with all moves occurring syn-
chronously. In this work, these two assumptions are relaxed,
in order to apply RA-MCPP to larger, more complex and
realistic environments. Note that it is still assumed that robots
move at a constant speed of one unit per second, only
stopping when failed, and multiple robots can exist on the
same location (no collision).

III. RELIABILITY-AWARE MULTI-AGENT COVERAGE
PATH PLANNING

A. Preliminaries

Let the state of the system of n agents at a time ¢ with
deadline f to be z = (t1,...,t,) € [0,]" = S, where t! is
the length of time an agent has survived. The environment
graph G(J, E) defines a set of m individual tasks, described
by the nodes J = (j1, ..., jm), with the edges, F describing
valid traversable paths between two tasks. For an agent i,
the failure probability density is denoted f;(t), cumulative
density F;(t), The probability of agent ¢ surviving at time t
is the reliability R;(t) = 1 — F;(t).

B. Problem Formulation

Given a set of n agents, each following failure distributions
fi(t) and environment graph G(J, E) containing a set of m
task nodes and a set of traversable edges E between them.
Let ¥; € W be a finite ordered subset of connected tasks
j € J (i.e. a path through G). A path for each agent forms
a strategy ¢ = {91, ..., } € ¥". The objective is to find
the n paths in the strategy 11, ..., 1, which maximises the
reliability metric of probability PoC() by a deadline ¢,
whilst ensuring all tasks have been visited. More formally,

PoC 1
Iax PoC(y) M
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C. Probability of Completion Metric

Given a particular strategy v, robots will move around and
complete tasks with the possibility of failing. At each state
of the system z, either all tasks have been visited and the



mission is completed, or not. Therefore given v, the state
space S can be partitioned into two non-intersection regions
of Completion C,,, and Non-Completion C.

For any strategy given as a set of paths ), define an
allocation matrix T% € R™*™_ where the elements T;é’ are
the first time at which agent ¢ is scheduled to complete the
task j. This is valid, as completion of task j is dependent
only on each agents first scheduled visit to j (the only reason
j would be missed is due to failure). Therefore a task j
is considered completed by agent ¢ if ¢; > T;’;, and the
Completion Region C,, can be defined as follows:

Cy={reS|VjIit,>T"} )

This is illustrated in Figure 2 showing the annotated state
space of two agents covering a small set of 5 tasks following
an example strategy. The two axes describe the state (time
alive) for each agent t;, with the deadline ¢ clearly denoted.
The times at which each agent’s tasks have been scheduled
are marked on the axis and grid lines. Then, for this particular
strategy, the red boundary denotes the earliest set of points
where completion has been achieved, i.e t; = TJJZ’ The blue
region, including the red boundary, thus graphically define
the completion region Cy. This completion region stretches
onwards to infinite time.

The Probability of Completion is then defined as the
probability that any realisation of the system will reach a
completion state and fall within the completion region. In
general, this is equivalent to computing the total probability
mass within the completion region. Note that in Figure 2,
the completion region is comprised of rectangles k C C,
formed by the task orderings. For instance, the highlighted
region ko 3 is a result of the case where agent 1 and agent 2
fail between their 2™ and 3%, and 3" and 4™ assigned tasks
respectively. Therefore, the probability density of each region
k is defined by the scheduled times t¥ and t¥ for consecutive
tasks of each agent i. Then the PoC is the sum of the integral
over the probability densities of each k& C C,. With more
agents, the dimension of the state space increases, and the
regions k now define hyperrectangles in n-d space with n
agents. This can be formally defined:

Definition 1. Given independent agents, each with failure
CDF F(t), the probability of completion (PoC) for a given
path plan ) is the integral of the probabilities of reaching
any state within the completion region C,.

PoC(y) = / plz) dx 5)
z€Cy
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where tf and ti? refers to the lower and upper time bounds
of the region k for each agent i, corresponding to the
scheduled times of consecutive tasks of an agents. Note for
a region k corresponding to an agent’s last scheduled task,
th =00 = F,(tF) — F;(tF) = 1 — Fi(tF) = Ri(th), the
Reliability. o o o
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Fig. 2: Annotated state space for 2 agents x = (t1,t2), with
deadline ¢, covering a set of 5 tasks by following an example
strategy. The authors encourage the reader to reference the
supplementary video for an animated explanation.

D. PoC Implementation

In order to compute PoC, the solver must then enu-
merate all the boundaries of each region k C C,. This
is equivalent to enumerating all combinations of tasks for
each agent, and computing the density of the corresponding
k regions, emitting O(m™) complexity for n agents and
m tasks. Observe that C is divided into two continuous
regions, separated by a single continuous border. By taking
advantage of this topology, the method can be improved
by only considering all possible combinations of tasks for
n — 1 agents. For each combination, a binary search can be
applied over the tasks of the n' agent to find the earliest
task for which the corresponding region is within C,, i.e.
the earliest task lying on the red boundary. In Figure 2, this
is equivalent to, for each row, performing a binary search
for the boundary, and calculating the density of the strip to
the right of that boundary. This improves the complexity to
O(m™ 1logm). Especially when used as an optimisation
objective, this improvement is significant for the evaluations
of strategies with large numbers of tasks and agents.

IV. GREEDY-GENETIC ALGORITHM APPROACH ToO
SOLVING RA-MCPP

This section argues that PoC is a monotone submodular
function so RA-MCPP can then be reformulated as a submod-
ular maximisation problem subject to cardinality constraints,
and thus solvable by a Greedy algorithm. However, practi-
cal applications of this technique may often be intractable.
Therefore a Greedy-Genetic Algorithm is proposed for use
in practice.



A. Submodular Formulation of PoC

Existing approaches all attempt solutions by simultane-
ously optimising all n trajectories of 1. In many recent
works, researchers have exploited the diminishing returns
property of submodular functions in order to obtain at most
1 - % error bounded solutions through greedy strategies
[19, 20].

Proposition 1. PoC(v), ¥ C Q is a monotone submodular
function, where () is the ground set containing all walks
through G up to a finite length.

Set the maximum walk length to be longer than any
reasonable path. Consider constructing a strategy 1 by adding
one agent at a time. Each added agent ¢ appends an additional
path 1, to the existing paths, creating a new strategy {U{v; }.
As each path ; is added, either (i) v; will not reach any
task earlier than the existing paths, with no improvement in
PoC(v), or (ii) v; will reach a task earlier and possibly
improve PoC'(1)). Therefore PoC' must be monotonic w.r.t
additional paths.

Submodularity is then shown if adding the same agent
path 1; to ¢ gets diminishing returns as v incorporates more
agents (i.e. grows in size) [20], if Y4 C ¥p C Q:

PoC(th)~PoC(th4) = PoC(pU{t::})— PoC(d4U{¢})
(N
From monotonicity, each additional path potentially improves
PoC by improving the probability of early task completion.
For the LHS, comparing two sets of paths ¢4 C 1 p, there
exists tasks which are improved only by the new trajectories
¥p/¥a. These new paths contribute an amount py; > 0
to Poc(ip). For the RHS, monotonicity demonstrates that
PoC(¢p U {¢i}) = PoC(¢p) and PoC(¢a U {¢;}) >
PoC(v4) due to v; possibly getting to tasks earlier. Again
comparing ¢ U {¢;} with ¢4 U {¢;} the difference is also
only due to the trajectories ¥ /14 as 1); is a member of
both. However this must contribute an amount p/;, < pg as
/1 may repeat improvements already made by ;. Thus
the difference in LHS p; > p:i, the difference of the RHS,
and PoC is submodular. A formal proof is omitted for brevity.
Therefore, RA-MCPP can be restated as choosing a set
of trajectories from the ground set ¢» C € (in addition to
existing constraints (2) and (3)):

P t bject t < 8
gl??z( oC(¢,t)  subject to || <n (8)

The maximisation of submodular functions in general is NP
hard [20], However the maximisation of monotone submod-
ular function with cardinality constraint || < n allows for
a simple greedy algorithm which selects an element with
the maximal marginal gain on the submodular function each
iteration, giving the 1 — é approximation of the optimal [20].

B. Greedy-Genetic Algorithm

Unfortunately, in all but the smallest of graph environ-
ments, it is intractable to enumerate the set of all trajectories
Q in order to find the greedy choice. Therefore this work

Algorithm 1 Greedy Genetic Solver

Input: number of agents n, environment graph G, agent
failure models f

Output: Strategy ¥, Probability of Completion PoCpes;
1: U 0, PoCpesy = 0.0
2: fori=1ton do
// Input is the current set of trajectories, number of
agents, environment graph and failure models
PoChew,¥; = geneticFindTrajectory(¥,i, G, f)
PoChest = PoCheq
W= U {y;}

end for

return V¥, PoC.4

® ;R

utilises a genetic algorithm to generate single candidate
trajectories 1; which maximise PoC when combined with tra-
jectories 1, ..., 1¥;—1 found in previous iterations (Algorithm
1). Whilst the submodular approximation bounding no longer
holds, the method still provides good strategies in practice.

A genetic algorithm is a meta-heuristic optimisation ap-
proach characterised by modelling the state as a chromosome,
and randomly applying operators known as mutation and
crossover in order to find optimal chromosomes scored by
fitness [21]. The geneticFindTrajectory method in Algorithm
1 uses an adaptation of the previous genetic algorithm in [8].
A chromosome is constructed as a single ordered set of tasks
¥; € Q. The population P := {t1,..,4,} for a population
size p. The chromosome fitness is defined to be the PoC
of ¥ U {+;} where U are the trajectories found in previous
iterations. The strategy is constructed by accumulating the
minimum time taken for each agent to travel between its tasks
via the shortest path with respect to the environment graph,
thus also allowing backtracking routes can also be found for
environments with no Hamiltonian Cycles. The optimisation
goal is then to maximise the fitness function of PoC.

In training, the algorithm is initialised with a valid
tour of the environment. The following 5 Mutation and
Crossover operators are implemented for reproduction: (1)
swap-mutation randomly swaps consecutive tasks, (2) add-
mutation, (3) delete-mutation are used to add or remove
tasks, (4) roll-mutation randomly cycles the starting task by
a random amount, and (5) sequence-crossover which takes
a random pair of chromosomes and chooses a random split
point on each in order to splice the paths together - start of
one to the end of the other and vice versa - to output two
new ones. Finally, for selection operators, random selection is
used for reproduction, and fournament selection with elitism
(top k chromosomes are kept) is used for constructing the
next generation. For evaluation in this paper, the Greedy-
GA was implemented using DEAP Python library [22] and
run for 2000 generations with an initial population of 100
chromosomes. The crossover and mutation probabilities were
set high to 0.5 and 0.3 respectively in order to explore more
of the state space.
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Fig. 3: Inspection paths found by the Greedy Genetic Algorithm, with 3 agents covering the Bristol Robotics Laboratory
Tour Scenario. PoC' = 0.8494 at t = 1263s each using the bathtubl500 failure model.

V. EVALUATION

The presented Greedy-Genetic Algorithm is compared
with existing methods: Two variants of a full path-based
genetic solver [8], which attempts to simultaneously optimise
all agent’s trajectories. The variants maximise (i) PoC only,
and (ii) the weighted sum of PoC and earliest completion time
respectively. (iii) Partitioning methods representing existing
solutions to MCPP (iv) A simple extension to partitioning
where the agents’ paths overlap with a neighbour, and (v)
Random walk.

These methods are then evaluated on three sample envi-
ronments: (i) Aircraft Inspection Scenario 1 in Figure la,
an environment with many tasks but fewer connections, (ii)
Aircraft Inspection Scenario 2 in Figure 1b, an environment
with fewer tasks but greater interconnectivity, and (iii) A
Laboratory Tour Scenario in Figure 3 to evaluate our method
on a real location. For the aircraft inspection, both graph-
based environments were generated from a 3D aircraft mesh
by applying our implementation of Adaptive Viewpoint Sam-
pling [9] at different resolutions and adaptation levels. The
edges were generated by choosing in (i) closest nodes, (ii)
all possible nodes, removing edges which would intersect the
aircraft. The graph for the laboratory tour was generated by
hand considering major junctions, doorways and thorough-
fares.

In addition, a Bathtub failure model [8] has been chosen
for each Robot, giving a more realistic failure distribution.
The Bathtub model is essentially a mixture of 3 Weibull
Distributions [23] representing early death, useful life, and
wear out periods respectively. The Bathtub curve we use is
defined by the resultant distribution generated by a weighted
sum of the respective failure rates, with PDF and CDF
respectively:

fo(t) = a1 f1(t) Ra(t) Rs(t) + az fa(t) Ba (1) Rs(t)
+ az fs(t) Ry (t) Ra(t)
Fy(t) =1— Ry(t)R2(t)Rs(t)
Refer to [8] for further details. Weights a; = 1/3. In this
work, all agents are assumed homogeneous and following

one of the two particular bathtub distributions shown in
Table I, chosen in order to best demonstrate results in the

Weibull 1 Weibull 2 Weibull 3
Name
A o A o A o
bathtub800 | 0.39 | 2000 | 1.00 | 1000 | 5.80 600
bathtub1500 | 0.76 | 5000 | 1.00 | 5000 | 11.10 | 1100

TABLE I: The shape A and scale i parameters of the Bathtub
distributions used where name indicates approximate lifespan

environments. In practice, these parameters would be found
through fitting this model to failure data collected from the
drones.

Figure 3 visualises a solution found by our method where
interestingly, the 3rd robot overlaps the others, presumably
in case of early failure. Quantitatively, Figures 4, 5 and 6,
each plot the PoC over time of the strategies found by each
method on each scenarios. The values of interest are the
PoCs at the deadline, which is set to the time taken for
an agent to traverse a tour of the environment. All of the
figures show the significant difference in reliability between
the strategies found by failure-informed methods compared to
standard methods. In comparison to the existing GA methods,
the Greedy-Genetic method is shown to find better solutions
on all scenarios. In particular, in both the 1% Scenario and
the lab tour (Figures 4 and 6), our method finds solutions
with a visible increase in reliability. In fact, completion is
almost guaranteed in the 1% Scenario with our method.

Finally, Figure 7 compares the results of the Greedy-
Genetic Algorithm applied to the 2nd Aircraft Inspection
Scenario with an increasing number of agents. With each
additional agent, the optimal paths for the previous agents
are kept. The increase in reliability as more agents are
added follows intuition. Crucially, the diminishing returns
property is clearly shown as agents are added, experimentally
validating the submodularity of PoC, and the reformulation
of RA-MCPP as a submodular maximisation (Equation 8).

VI. CONCLUSION

This work proposes a path planner capable of solving the
Reliability-Aware Multi-Agent Coverage Path Planning (RA-
MCPP) problem in continuous time, enabling the consider-
ation of more complex and realistic environments. The RA-
MCPP problem is formalised as the optimisation of the Prob-
ability of Completion (PoC) metric subject to connectivity
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covering the Aeroplane Scenario 2 in figure 1b.

and failure models. It is argued that the PoC function is a
monotone submodular function and RA-MCPP can also be
formalised as a submodular maximisation problem subject to
cardinality constraints over the set of all paths which emits a
Greedy approximation. From this reformulation, the Greedy-
Genetic Algorithm is proposed where, a genetic algorithm
is applied iteratively to successively find agent paths which
maximise PoC. Our method is shown to provide plans with
higher reliability when compared with existing approaches
in three real inspection scenarios. Future directions of this
work will be to validate this method on real drones, and
also investigate the effect of reliability awareness in on-line
dynamic planning and during reactive reorganisation when
failures occur.
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